
/n/.J. fkat Mass Trunsfer. Vol. 37, No. 2.p~. 333-336, 1994 0017-9310/94$6.00+0.00 
Print&in Great Britain 0 1993Pergamon Press Ltd 

TECHNICAL NOTES 

Flow and heat transfer of plane surfaces moving in parallel and 
reversely to the free stream 

HSIAO-TSU~G LINT AND SHIH-FENG HUANG 

Department of Chemical Engineering, National Centrai University, Chungli, Taiwan 32054, R.0.C 

(Received 4 August 1992 and in ftnal form IO November 1992) 

I. INTRODUCTION 

Two TYPES of classical forced convection problems have been 
extensively studied for the past years. They are the Blasius 
problem [I, 21 of a steady flow over a stationary flat plate; 
and the Sakiadis problem [3. 41 of a plate moving con- 
tinuously in a quiescent ambient fluid. However, in many 
practical engineering systems both the plane surface and 
the ambient Buid are moving in parallel. Examples are the 
cooling of polymer films or sheets and metallic plates on 
conveyers. The problem of a moving surface in a parallel free 
stream has been investigated by Abdelhafez [5]. He obtained 
numerical solutions of the governing boundary layer equa- 
tions and Navier-Stokes equations. Chappidi and Gun- 
nerson [6] studied the same problem by using an integral 
method along with a perturbation procedure. 

In this paper, we study the generai forced convection prob- 
lem of a surface moving continuously in a flowing stream by 
using a quite different transformation to obtain similarity 
solutions. The present solutions are very accurate for any 
relative speed of the surface and the free stream over a wide 
range of Prandtl number between 0.01 and 10000. We study 
not only the case of a plane surface moving in parallel to the 
free stream but also the case of a surface moving reversely. 
The latter case has not been studied previously. For appli- 
cation convenience, very accurate correlation equations are 
proposed for predicting the wall friction and heat transfer 
for any velocity ratio of the surface and the free stream. 

2. FLOW PROBLEIVI 

Consider a plane surface moves, in parallel or reversely to 
a free stream of uniform velocity u,, at a constant velocity 
u,. Either the surface velocity or the free stream velocity may 
be zero but not both. Assume the surface and the free stream 
are at the same temperature or with small temperature 
difference so that the buoyancy effect on flow is negligible. 
The physical properties of fluid are assumed to be constant. 
Under such conditions, the continuity and momentum equa- 
tions of the steady, laminar boundary-layer flow on the 
moving surface are 

(1) 

du au L&4 
Ma7; -+V& = “p. 

The boundary conditions of this system are 

u = jIu,, L;=O at y=O, 

and 
u=u, as y-0. 

(2) 

(3) 

(4) 

f Author to whom correspondence should be addressed. 

The boundary condition of t( = +a, in equation (3) rep- 
resents the case of a plane surface moving in parallel to the 
free stream, while u = -u,, represents the case of a surface 
moving reversely. 

In order to analyse the effect of both the moving surface 
and the free stream on the boundary-layer flow. we propose 
a new similarity coordinate and a dimensionless stream func- 
tion as 

rj = (y/.x)(Re,&- Re,) I”, f= ~/~(Re~+Re~)“~ (5) 

which are the combinations of the traditional ones : 

tyR = (,~/x)Re;‘. .fB = IC//vRej ’ (‘5) 

for the Blasius problem ; and 

ns = (~/.Y)R’:~ ,f = $ivRe”’ WI s w (7) 

for the Sakiadis problem. where the Reynolds numbers 

Rew = u,r/v, Re ,_ = u , .ujli. (8) 

In addition, a parameter of velocity ratio is introduced as 

l;=uw/(u~~+u,)=(I+u,/u,)~‘=(I+Rr,/Re~)-’. 

(9) 

Note that for the Blasius problem, a, = 0, therefore 7 = 0. 
On the other hand, for the Sakiadis problem. II, = 0, and 
thus? = 1. 

The present and the traditional transformation variables 
defined in equations (S)-(7) resulted in the same similarity 
equation 

2f’ +#- = 0. wi 4rl (10) 

However, the transformed boundary conditions of the 
present system are 

.f’(O) = 0, &(O) = &,I, .f;,(m) = 1 -7 (11) 
which can be readily reduced to the conventional boundary 
conditions for the Blasius problem and the Sakiadis problem 
by setting y = 0 and 1 I respectively. 

Equations (IO) and (I 1) were integrated numerically by 
using the fourth order Runge-Kutta scheme along with the 
shooting method. Since equation (10) is a similarity 
equation, very accurate numerical solutions can be obtained. 
The high accuracy of the numerical results has been verified 
by comparing the present data of,f;,(O) for y = 0 and I with 
the reported solutions of th Blasius problem and the Sakiadis 
problem. 

2.2. Velocity profiles 
The dimensionless stream-wise velocity 

n/(rdw + U%) = ,f,(Y) (12) 

is presented in Fig. 1 (a) for the parallel moving surface; and 
in Fig. I(b) for the reverse moving surface. Figure I (a) shows 
clearly a gradual conversion of the velocity profiles as the 
parameter of velocity ratio y increases from 0 to 1. In Fig. 
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FIG. I. Profiles of the dimensionless velocity u/(u,+u, ). 
(a) parallel moving surface ; (b) reverse moving surface. 

l(b). a rcversc Ilow region near the plane surface (at the 
region of small 11) can he seen. 

The wall shear stress is related to f,,,,(O) by the relation 

= o(Y:.\-)‘(Rc,v+ Rc,)' ‘l/,,,,(O,l 

(13) 

To express the wall shear stress nondimensionally, we detinc 
two types of the local friction coefficients as 

C‘, = 2T,L ‘(JI/2 , c,, : 2sw:&. (14) 

A combination of equations ( 13) and (14) gives 

C’,Rc;‘= 2(1-~))“//,,(O)/. C,RP&’ = 2y “1 f,,,,(O)\. 
(15) 

Figure 2 shows that, for the parallel moving surface. C’, 
RCJ! ’ decreases from 0.66412 to 0 as ;’ increases from 0 
to 0.5 : and C,$Rei 2 increases from 0 to 0.8X7.53 as ;‘ increases 
from 0.5 to I. For the reverse moving surface. c’ Rc’, ’ 

deCredSeS as 7 increases from 0 to a limit of about 0.26. 
Beyond this limit, the laminar boundary layer would break- 
down due to the opposite moving of the surface and the free 

0.8 -.- ReYerSe 0.8 

u 0.4 0.4 4: I)) 

0.0 I,,..w.,..i 0.0 
0.0 0.5 1 .o 

Y 

Ftc,. 2. Variations of wall I’riction with ;‘ 

stream, and thus the convergent numerical solutions cannot 
he obtained. This figure also shows that the wall friction of 
the reverse moving surface is smaller than that of the parallel 
moving surface at the same speed. 

2.4. C'orrr1ution.s ofthe fiktiorr coeffiicierzr 

For application convenience. we propose the following 
correlation equations for predicting the friction cocfhcient of 
the parallel moving surface : 

C’, Rcj ’ =0.66412(1-2;,) (1-1.14;~)“. 0<;‘<0.5 

(16) 

C‘,.Rc:, 2 -= ().X8753(2;- I), (1.036;,) i ‘. 0.5 & ;’ 5. I 
((7) 

The maximum errors of the correlation equations (I 6) and 
(I 7) arc less than 3.4 and 5.2”%. respectively, when compared 
with the numerical data. 

The correlation equation of the rcversc moving surface 
is developed, based on C I Re’, ’ = 0.66412 at ;’ = 0 and 
0.433 I2 at ;’ = 0.25, as 

C’, Rr, ’ ’ = I I p;‘) 3‘[(0.6h412)‘~( I .I;,)” 

+(l.lxJ;‘)“]! ‘. 0 < 1‘ < 0.75 (IX) 

7‘hc exponent ,I in equation (I 8) can be dctcrmtned by con- 
paring with the numerical data The maximum error of this 
correlation equation with II = 0.86 does not exceed 2.2’%1. 

3. HEAT TRANSFER PROBLEM 

The boundary-layer energy equation :md boundary con- 
ditions of the considered svstem arc the same as the con- 
vcntional ones. If we apphed the dimensionless variables 
defined in equation (5) to the transformation of the energy 
equation. the transformed equanon can only bc solved for 
lluids of Prandtl number bet\veen 0. I and IO. In order to 
obtain the convergent solutions for a wide range of Prandtl 
number (0.01 < Pr < 10000). we introduce 

I =- (riRc,+c~~Rc,)’ ‘. vvhhorc 

to dctine the dimensionless coordtnutc and dimenstonless 
stream function as 

i = ( J,:.Y)/.. F = $ XL. ( 20) 

In addition, we modify the parameter of relative velocity ; 
to a new one : 
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FIG. 3. Dimensionless temperature profiles, (a) parallel 
moving surface ; (b) reverse moving surface. 

4 = (I +ou,/aUw)-’ = (I +wRe,/aRe,)-‘. (21) 

Using the proper dimensionless variables defined in equa- 
tions (19)-@I), the transformed momentum equation and 
boundary conditions becomes 

2PrF” + FF” = 0, (22) 

F(Of = 0, F’(O) = i 5(1 t Prf/Pr, 

F’(50) = (1 -<)(I+Pr)” (23) 

where the primes denote differentiation with respect to i. 
The transformed energy equation and boundary conditions 
are 

28”+FO’= 0, (24) 

e(0) = 1, O(W) = 0 (25) 

where the dimensionless temperature 0 = (T- TX)/ 
(L--Z). 

The similarity momentum equation (22) was solved accu- 
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Variations of NujRe, I2 with <, (a) parallel moving 
surface; (b) reverse moving surface. 

rately by using Runge-Kutta integration scheme along with 
the shooting method. The transformed energy equation (24) 
was also solved by the same numerical procedure. The simi- 
larity solutions has been verified to be very accurate when 
compared with the reported data of the Blasius problem and 
the Sakiadis problem. 

3.2 Temperuture profiles 
Representative dimensionless temperature profiles ofgases 

(Pr = 0.7) on a parallel moving surface are presented in Fig. 
3(a). This figure shows that the fluid temperature decreases 
with increasing surface velocity. 

The dimensionless temperature protiles for the case of a 
reverse moving surface are shown in Fig. 3(b) for some 
specified values of 5. As can be seen from this figure, the fluid 
temperature increases with increasirlg surface velocity. 

3.3. Locul Nusselt number 
The local Nusseh number, Nu = h-x/k, can be obtained 

from the numerical results by the relation 

/ 2 

o’(0). (26) 

The variations of Ntr/Re, IrZ with the relative velocity par- 
ameter 4 for Pr = 0.01 to 10000 are presented in Fig. 4(a). 
This figure shows that Nu/Re~’ increases with increasing 4. 
In addition, the values of iV~,lRe$~ for large Pr are greater 
than those for small PP as can be seen from this figure. 
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Table 1. Values of II and the maximum error of the heat Table I. PredIctions of heat transfer from the correlation 
transfer correlation equation over the whole range ofvelocity coincide satisfactorily with the numerical results, as indicated 

ratio in this table. 

Value?, or II 

0.76 
0.x4 
0.97 
1.02 

Maximum 
error (“t(,) 

5.1 
6.5 
5.3 
I .4 

4. CONCLUSIONS 

This papel- studied the general convection problem of a 
continuous moving surface in a llowing lluid by introducing 
novel transformation variables and parameters of velocity 
ratio. For the case of a plane surface moving in parallel to a 
free stream, very accurate similarity solutions and correlation 
equations for predicting the wall friction and heat transfer 
rate have been obtained Ihr any ratio of surface \elocit! and 
[I-CC stream v&city over the range of 0.01 < Pr < 10000. 
The cast of a surface moving in the rcvcrse drrectlon of the 
free stream has also been analyzed. Velocity and tcmperatul-c 
profiles have been presented to show thccfl’ccts oflhc relati\c 
motion of the plane surface and the f~-cc stream. The 
dcvclopcd analysis method can be applied to the miucd 
convection problems and many others. 

For the case of a reverse moving surface, FIB. 4(b) shows 
that /VII:&‘, ’ decreases as < increases. The decrease of the 
Nusselt number is due to the back flow or hot fluid from the 
down-stream. 

3.4. C‘orr&lio,l l~~~Ucrli0,l.S of hccr, Ircltl.~~ci 
A correlation equation of the local Nusselt number for 

any velocity ratio is developed as 

This correlation can be rewritten as 

where Nu,,i(tuRc,) ’ ’ for the special case of the Blasius prob- 
lem (7 = 0) can be estimated from the correlation in ref. (71 : 

Nu,,!‘Re’, = 0.3386Pr’ ‘, 

(0.0526+0.1121 Pr”+Pr)“‘. (19) 

The maximum error ofthis correlation does not exceed I .4X 
for 0.001 < Pr < CL. While Nus/(oRe,) ’ ‘for the special case 
of the Sakiadis problem (;, = 1) can be predicted by the 
present correlation equation 

Nu,:Re;,’ = 9.5642P,_’ ’ 

(0.4621+0.1395P~’ ‘+Pr)’ -. (30) 

The maximum error of this correlation is less than 1% fol 
0.01 < Pr d 10000. 

Appropriate values of the exponent II in the correlation 
equations (27) and (28) for ditrerent Pr are presented in 
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Thermal entrance length and Nusselt numbers in coiled tubes 
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INTRODUCTION the other hand, (Nu)<~ undergoes spatial oscillations before 

SKONDAKY flow in coiled tubes, generated as a result of tube settling down to a fully developed value. Numerical cal- 

curvature, significantly increases heat transfer as compared culations of this phenomenon have been carried out by Dra- 

to flow in straight tubes. In straight tubes the peripherally vid et ul. [l], Tarbell and Samuels [2], Patankar CI crl. [3]. 

averaged Nusselt number, (Nu)+, is a maximum at the tube Akiyama and Cheng [4] and Janssen and Hoogendoorn [5]. 

inlet, decreases monotonically in the downstream direction. There is also some experimental evidence in the observed 

and asymptotes to a fully developed value. In coiled tubes on spatial wall temperature oscillations reported by Dravid (‘I 


